Non-adiabatic electron behaviour due to short-scale electric field structures at collisionless shock waves

نویسندگان

  • V. See
  • R. F. Cameron
  • S. J. Schwartz
چکیده

Under sufficiently high electric field gradients, electron behaviour within exactly perpendicular shocks is unstable to the so-called trajectory instability. We extend previous work paying special attention to short-scale, highamplitude structures as observed within the electric field profile. Via test particle simulations, we show that such structures can cause the electron distribution to heat in a manner that violates conservation of the first adiabatic invariant. This is the case even if the overall shock width is larger than the upstream electron gyroradius. The spatial distance over which these structures occur therefore constitutes a new scale length relevant to the shock heating problem. Furthermore, we find that the spatial location of the short-scale structure is important in determining the total effect of non-adiabatic behaviour – a result that has not been previously noted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Acceleration at a Low-mach-number Perpendicular Collisionless Shock

A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (MA = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low-Mach-number perpendicular shocks. In this paper, the effect o...

متن کامل

Electron Heating by the Cross-shock Electric Potential Electron Heating by the Cross-shock Electric Potential

Electrons can experience super-adiabatic heating at a collisionless shock due to the presence of a cross-shock electric potential. This heating can greatly exceed the temperature rise associated with the conservation of the magnetic moment of the electrons as they move into the stronger magnetic eld downstream of the shock. The criterion for the onset of super-adiabatic heating and the eeects o...

متن کامل

Particle Acceleration and Magnetic Field Generation in Electron - Positron Relativistic Shocks

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associ...

متن کامل

Electron Shock Surfing Acceleration in Multidimensions: Two-dimensional Particle-In-Cell Simulation of Collisionless Perpendicular Shock

Electron acceleration mechanism at high Mach number collisionless shocks propagating in a weakly magnetized medium is investigated by a self-consistent two-dimensional particle-in-cell simulation. Simulation results show that strong electrostatic waves are excited via the electron-ion electrostatic two-stream instability at the leading edge of the shock transition region as in the case of earli...

متن کامل

On Electron Adiabaticity in Collisionless Shocks

Collisionless shocks are considered as one of the most efficient phenomena for the electron acceleration in space and astrophysical plasmas, yet the detailed acceleration process and heating mechanism remain unsolved. Various acceleration and heating mechanisms have so far been proposed and discussed to explain the spacecraft measurements in situ at Earth’s bow shock, involving the large-scale ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013